

INSTALLATIONSHANDBUCH

DB1 400V 15A-25A Series DB1 400V 3A-4A-7A-10A Series

MDmotion s.r.l.

Via Garibaldi, 12/5

San Giorgio di Piano 40016 (Bologna) Tel. 051.6867021 - Fax 051. 0314199

Web: www.mdmotion.it

e-mail: info@mdmotion.it

Revision 1.2 / Mai 2011

i.1 REVISIONEN

Revision	Beschreibung und Änderungen
Rev. 1.0/August 2010	Erste Ausgabe.

Rev. 1.1/Januar 2011	Einfügung aller Modelle DB140		
Rev. 1.2/Mai 2011	Änderung der Motorentabellen 4.1.1 und Anschluss Codierer Abschnitt 3.2.2 Teil a) und c).		

1. HINWEISE

Das gegenständliche Handbuch enthält die für die Installation und die Verwendung des Produktes unbedingt notwendige Information und ist daher als fester Bestandteil desselben zu betrachten. Zur weiteren Vertiefung wird auf das *Bedienungshandbuch* und auf die *Anwendungshinweise*, die direkt von der Website <u>www.mdmotion.it</u> heruntergeladen werden können, verwiesen.

Der Hersteller behält sich das Recht vor, Änderungen, die er für angemessen hält und die auf eine technische Verbesserung des Produktes oder des Bedienungshandbuchs selbst ausgerichtet sind, ohne vorherige Mitteilung oder Ersatz vorzunehmen.

Der Hersteller weist jede Verantwortung zurück, die sich aus einem unzweckmäßigen Gebrauch des Produktes selbst ergibt.

Falsche Handgriffe bei der Betätigung können zu Personen- und Sachschäden führen.

Vor der Installation und der Inbetriebnahme müssen die auf der Etikette des Produktes aufgeführten Daten und Angaben genau kontrolliert und das Installations- und Bedienungshandbuch aufmerksam gelesen werden.

Mit der Installation, der Inbetriebnahme und der Wartung des Produktes darf nur qualifiziertes technisches Personal betraut werden, das über Kompetenz in der Durchführung dieser Tätigkeiten verfügt und das mit den geltenden Sicherheitsvorschriften vertraut ist.

1.1 SICHERHEITSANGABEN

Während des Betriebs kann das Produkt Folgendes aufweisen:

- ♦ Unbedeckte Teile unter Spannung,
- Steuerungs- und Leistungsanschlüsse, die auch bei stillstehendem Motor spannungsführend sein können,
- ♦ Heiße Oberflächen.

2. STECK- UND SIGNALVERBINDER

In den folgenden Abbildungen sind die Signal- und Steckverbinder der Antriebe DB1A40 angegeben:

Antrieb DB1 400V 3A-4A-7A-10A Series

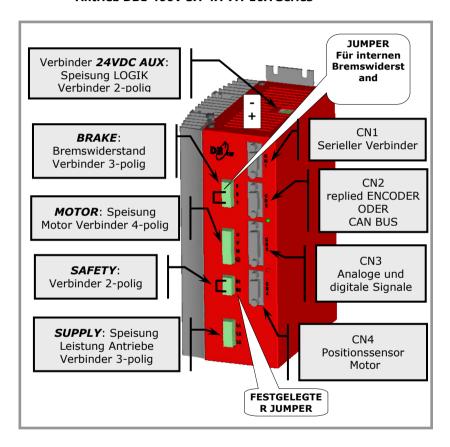
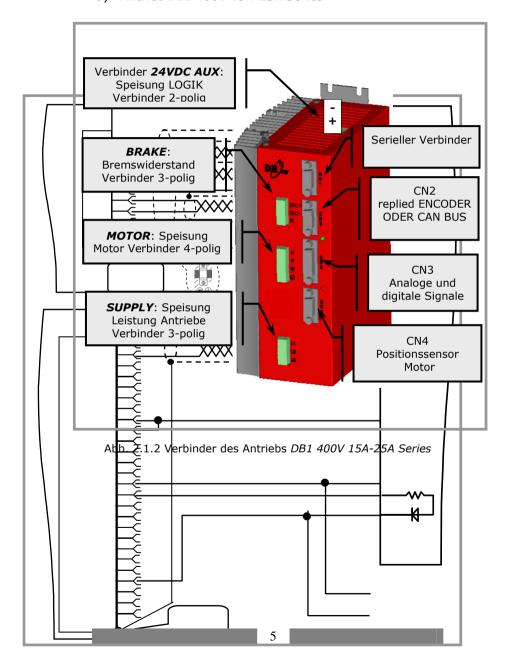


Abb. 2.1.1 Verbinder des Antriebs DB1 400V 3A-4A-7A-10A Series

ANWENDUNGSHINWEISE

CN3


Typische Anschlussbeispiele zwischen dem Antrieb DB1 und den verschiedenen Controllern.

6.1 ANSCHLUSS ZWISCHEN DB1 UND DEM CN

DB1 CN2 Verbi	2 9-polig ndungsbu		CN
A\ 1 A 3 B\ 4 GND 6 Z\ 7 8		A\ A B B\ GND Z Z\	Eingang Codierer
	äuse N2		
DB1 2	N3 HD 6-polig erbindunasbuchs	+VREF -VREF	Analoger Set-Point
CLK 6 0VCLK 7 DTEN 8 DIEN 9 - 10 ATEXREF\ 11		DIEN	Digitaler Output
ANOUT1 12 CANH 13 DOUT1+ 14 DOUT1- 15 DIR 16		+24V AZ. OK	
DIN2 17 DIN2 18 DIN1 18 ATEXREF 19 ANOUT2 20 OVCAN 21 CANL 22		0V24V	Digitaler Input Antrieb
0V24V 23 0V_DIR 24 DIN3 25 DIN4 26	Gehäuse	+24V 0V24V	Externes Netzgerät 24Vdc

24Vdc

a) Antrieb DB1 400V 15A-25A Series

2.1 STECKVERBINDER

In der Abb. 2.1.1 sind auf der rechten Seite die Steckverbinder angegeben.

24VDC AUX: Speisung LOGIK

Pir	1	Name	Beschreibung	
-		0V24V	Bezug 24Vdc	
+		24V	Speisung 24Vdc	

MOTOR: Speisung Motor

Pin	Name	Beschreibung	
U	Phase U	Ausgang Phase U Motor	
V	Phase V	Ausgang Phase V Motor	
W	Phase W	Ausgang Phase W Motor	
PE	Erdung	Erdung Motor	

SUPPLY: Speisung Netz Antrieb 400Vrms

Pin	Name	Beschreibung	
L1	L1	Phase Speisung L1	
L2	L2	Phase Speisung L2	
L3	L3	Phase Speisung L3	

a) Antrieb DB1 400V 3A-4A-7A-10A Series

BRAKE: Bremswiderstand

Pin	Name	Beschreibung	
3	RES EXT	Externer Widerstand	
2	RES INT	Interner Widerstand 100W	
1	COMUNE	Allgemein	

DEFAULT: Jumper zwischen Pin1 und Pin2 die den internen Widerstand einschalten.

SAFETY: Sicherheit

	Pin	Name	Beschreibung	
	S1	VDC1	Speisung DCBUS Motorseite	
	S2	VDC2	Speisung DCBUS Seite Speisung	

Überprüfen, ob andere Programme die serielle Schnittstelle belegen.

5.3.2 Vorliegen von Alarmen auf dem Antrieb

- Alarm 01: OVERVOLTAGE:
 - Speisspannung zu hoch.
 - Last bei erhöhter Trägheit und Bremswiderstand nicht korrekt dimensioniert.
 - Bremswiderstand beschädigt oder nicht angeschlossen, Jumper des internen Bremswiderstandes kontrollieren.

- Alarm 02: UNDERVOLTAGE:
 - Speisspannung zu niedrig.
 - > Antriebe ohne Stromspeisung freigeschaltet.
- Alarm 03: OVERCURRENT:
 - Rasches Bremsen oder rasche Beschleunigung mit Last mit erhöhter Trägheit.
 - Überprüfen, ob der angeschlossene Motor dem ausgewählten entspricht.
 - Den Anschluss des Positionssensors CN4 überprüfen.
- Alarm 04: CODIERER FAULT:
 - Den Anschluss des Positionssensors CN4 überprüfen.
- Alarm 05: HEATSINK OVERTEMP:
 - > Außentemperatur am Drive hoch.
 - Belüftung nicht ausreichend.
 - > Maschinenzyklus überhöht.
 - Alarm 07: IGBT FAULT:
 - Den Anschluss des Motors und eventuelle Kurzschlüsse in Richtung Erdung kontrollieren.
- Alarm 15: MOTOR OUT OF CONTROL:
 - Den Motoranschluss kontrollieren
 - Den Anschluss des Positionssensors CN4 überprüfen.

5.2 ALARMCODIERUNG

Aufleuchte n rotes Led	ALARM	BESCHREIBUNG	
Anz.	OVERVOLTAGE	Spannung auf Bus in C.C. höher als der zulässige Grenzwert.	
Anz.	UNDERVOLTAGE	Spannung auf Bus in C.C. niedrig.	
Anz. 03	OVERCURRENT	Am Antrieb erforderlicher Strom erhöht.	
Anz. 04	ENCODER FAULT	DDER FAULT Alarm des Positionssensors.	
Anz. 05	HEATSINK OVERTEMP	Temperatur des Wärmeableiters erhöht.	
Anz. 06	MOTOR OVERTEMP	Temperatur des Motors erhöht.	
Anz 07	IGBT FAULT	Überstrom oder Kurzschluss auf den drei Phasen und der Erdung, Übertemperatur od Unterspannung im Leistungsstatus.	
Anz. 15	MOTOR OUT OF CONTROL	Motor außer Kontrolle	

5.3 STÖRUNGEN UND LÖSUNGEN

5.3.1 Die serielle Schnittstelle kommuniziert nicht mit dem Antrieb

Kompleiert der Antrieb nicht über die serielle Schnittstelle, müssen die fein den Fälle überprüft werden:

Kontrollieren, ob das verwendete Kabel nach dem in der Abb. 4.2.1.1 aufgeführten Schema ausgeführt ist, es dürfen nur 3 Leiter angeschlossen sein.

- Die Software MC muss auf die letzte Version upgedatet sein, so kommuniziert sie auch mit allen vorhergehenden Versionen.
- Überprüfen, ob die ausgewählte COM jene ist, auf die sich der Anschluss des PC bezieht.
- Überprüfen, ob die Software "Motor Control" nicht mehrmals ausgeführt wird.

DEFAULT: Jumper zwischen PinS1 und PinS2. Für andere Konfiguration ist das BEDIENUNGSHANDBUCH einzusehen.

b) Antrieb DB1 400V 15A-25A Series

BRAKE: Bremswiderstand

Pin	Name	Beschreibung	
DC+	RES EXT-	Externer Widerstand	
DC-	-	Nicht verwenden	
R	RES EXT+	Externer Widerstand	

ANMERKUNG: Es ist kein interner Widerstand vorhanden, daher muss der externe Widerstand stets zwischen den Pins DC+ und R montiert werden.

2.2 SIGNALVERBINDER

In der Abb. 2.1.1 sind rechts die Signalverbinder angegeben.

CN1: RS232 LINE (SERIELL)

Steckverbinder SubD 9-polia:

Pin	Name	Beschreibung
1		Pin Reserviert (*)
2	RX	Empfangssignal
<mark>3</mark>	TX	Übertragungssignal
<mark>4</mark>	<mark></mark>	Pin Reserviert (*)
<mark>5</mark>	GND	Bezugssignal
<mark>6</mark>	<mark></mark>	Pin Reserviert (*)
<mark>7</mark>		Pin Reserviert (*)
8		Pin Reserviert (*)
9		Pin Reserviert (*)

(*) **ACHTUNG:** Die reservierten Pins dürfen NICHT angeschlossen werden.

CN2: CAN BUS & REPLIED ENCODER

Verhindungshuchse SuhD 9-nolige

Pin	Optio	n Ausgänge odierer	ge Option CAN Open	
	Name	Beschreibun g	Name	Beschreibung
1	<mark>A\</mark>	Phase A\		Reserviert
2	A	Phase A	CANL	CAN LOW
<mark>3</mark>	B	Phase B	0VCAN	Bezugsfeldbus
<mark>4</mark>	<mark>B\</mark>	Phase B∖	<u></u>	Reserviert
<mark>5</mark>	GND	Bezugsmasse	<u></u>	Reserviert
<mark>6</mark>	Z	Phase Z (Null)	<u></u>	Reserviert
7	<mark>Z</mark> \	Phase $Z\setminus (Null\setminus)$	CANH	CAN HIGH
8		Reserviert	CANH	CAN HIGH
9	<mark></mark>	Reserviert	CANL	CAN LOW, mit Abschlusswiders tand 120Ω

CN3: SIGNAL

Verhindungshuchse SuhD HD 26-polia

Pin	Name	Beschreibung
PIII	Name	beschiebung
1	+VREF	Analoges Differential-Bezugssignal der Geschwindigkeit/des Drehmoments, positiv
2	-VREF	Analoges Differential-Bezugssignal der Geschwindigkeit/des Drehmoments, negativ
<mark>3</mark>	ANOUT R	Bezugsmasse ANOUT1 und ANOUT2
<mark>4</mark>	ZSPEED+	Ausgang Geschwindigkeitsanzeige Null (Option)
<mark>5</mark>	ZSPEED-	Ausgang Geschwindigkeitsanzeige Null (Option)
<mark>6</mark>	CLK	Eingang positives FREQUENZ-Signal der Steuerung des Schrittmotors (Option)
<mark>7</mark>	0VCLK	Eingang negatives FREQUENZ-Signal der Steuerung des Schrittmotors (Option)
8	DTEN	Digitaler Eingang der Freischaltung der Motorkontrolle.
9	DIEN	Digitaler Eingang der Freischaltung des Geschwindigkeits-Bezugssignals +/-VREF
<mark>10</mark>	- -	-

Software "Motor Control" kann kostenlos von der folgenden Website heruntergeladen werden: www.mdmotion.it.

BETRIEBSSTAUS ANTRIEB

5.1 ANZEIGE BETRIEBSSTAUS ANTRIEB.

Auf der Vorderseite befinden sich zwei LEDs, ein GRÜNES und ein ROTES, die den Betriebsstatus von DB1 angeben.

5.1.1 GRÜNES LED

Das grüne Led zeigt die korrekte Speisung des Logik-Abschnitts an (Speisung 24Vdc vorhanden).

5.1.1 ROTES LED

Das rote Led zeigt den Betriebsstatus der Antriebe an:

- Durchgehend leuchtend: Der Antrieb befindet sich nicht in Alarmzustand und die Achse ist frei.
- Mit hoher Frequenz blinkend: Der Antrieb befindet sich nicht in Alarmzustand und die Achse im Drehmoment.
- Mit niedriger Frequenz blinkend: Der Antrieb befindet sich in Alarmzustand. Die Anzahl des Aufleuchtens identifiziert den Alarmcode (für die Alarmcodierung siehe Kapitel "DIAGNOSTIK").

4.2 ÄNDERUNG DER PARAMETER ÜBER DIE SERIELLE SCHNITTSTELLE

Das die Schnittstelle RS 232 (CN1) von DB1 anschließen.

Das erbindungskabel nur bei ausgeschalteter speit annung ab- und anstecken (Antrieb).

4.2.1 ANSCHLUSSSCHEMA SERIELLES KABEL

Das serielle Anschlusskabel muss die unten angegebenen Anschlüsse aufweisen, alle anderen Pins **dürfen nicht angeschlossen werden**.

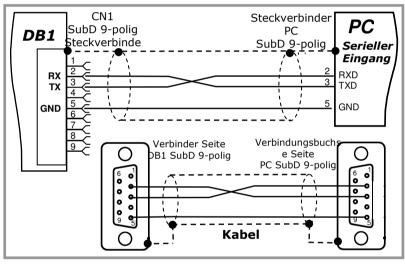


Abb. 4.2.1.1 Serielles Anschlussschema PC und DB1

4.2. MMUNIKATIONSSOFTWARE "MOTOR CON L"

Die "Are "Motor Control" ermöglicht über die Funktion "Parameter Programming" die Parametrisierung des Antriebs und die Durchführung einer Diagnosekontrolle des Antriebs mit Zugang zum Verlauf der Alarme über die Funktion "Alarms" und ist bei der Inbetriebnahme der Maschine durch die Anzeige der interessanten Größen des Antriebs in Echtzeit (Geschwindigkeit, Set-Point, Drehmoment…) über die Funktion "Trace" sehr nützlich. Die

11	ATEXREF\	Analoger negativer programmierbarer Differentialeingang
<mark>12</mark>	ANOUT1	Programmierbarer analoger Eingang 1 (Option)
<mark>13</mark>	CANH	Signal CAN HIGH (CAN Open)
<mark>14</mark>	DOUT1+	Output digitale Antriebe OK +
<mark>15</mark>	DOUT1-	Output digitale Antriebe OK -
<mark>16</mark>	DIR	Eingang positives RICHTUNGS-Signal der Steuerung des Schrittmotors (Option)
<mark>17</mark>	DIN2	Programmierbarer digitaler Eingang 2
<mark>18</mark>	DIN1	Programmierbarer digitaler Eingang 1
<mark>19</mark>	ATEXREF	Analoger positiver programmierbarer Differentialeingang
<mark>20</mark>	ANOUT2	Programmierbarer analoger Ausgang (Option)
<mark>21</mark>	0VCAN	Bezugssignale Feldbus CAN Open
<mark>22</mark>	CANL	Signal CAN LOW, Feldbus CAN Open
<mark>23</mark>	<mark>0V24V</mark>	Bezug 24Vdc, Masse digitale Eingänge
<mark>24</mark>	0V_DIR	Eingang negatives RICHTUNGS-Signal der Steuerung des Schrittmotors (Option)
<mark>25</mark>	DIN3	Programmierbarer digitaler Eingang 3
<mark>26</mark>	DIN4	Programmierbarer digitaler Eingang 4

CN4: FEEDBACK

Verbindungsbuchse SubD HD 15-polig

Pin		CODIERER
FIII	Name	Beschreibung Signal
1	+VENC	Speisung Codierer
2	A	Phase A Codierer
<mark>3</mark>	<mark>A\</mark>	Phase A\ Codierer
4	В	Phase B Codierer
<mark>5</mark>	<mark>B\</mark>	Phase B\ Codierer
<mark>6</mark>	Z	Null Codierer
<mark>7</mark>	<mark>Z</mark> \	Null\Codierer
8	PTC	Thermik vom Motor
9	<mark>0V</mark>	Bezug PTC
<mark>10</mark>	U	Phase U Codierer
11	V	Phase V Codierer
<mark>12</mark>	W	Phase W Codierer
<mark>13</mark>	0VENC	Bezug +VENC

<mark>14</mark>	<mark></mark>	Signal Reserviert
<mark>15</mark>		Signal Reserviert

3. ELEKTRISCHE ANSCHLÜSSE DB140DXX

3.1 ANSCHLUSS SPEISUNGEN MIT DB140DXX

In der folgenden Abbildung sind die Anschlüsse der Antriebe DB1A40 mit der Stromspeisung **400Vac Dreiphasenstrom** und mit der Speisung der Logik **24Vdc** aufgezeigt:

a) Antrieb DB1 400V 3A-4A-7A-10A Series

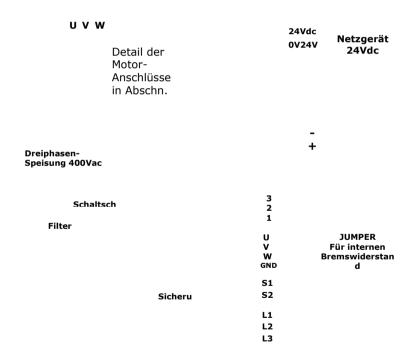
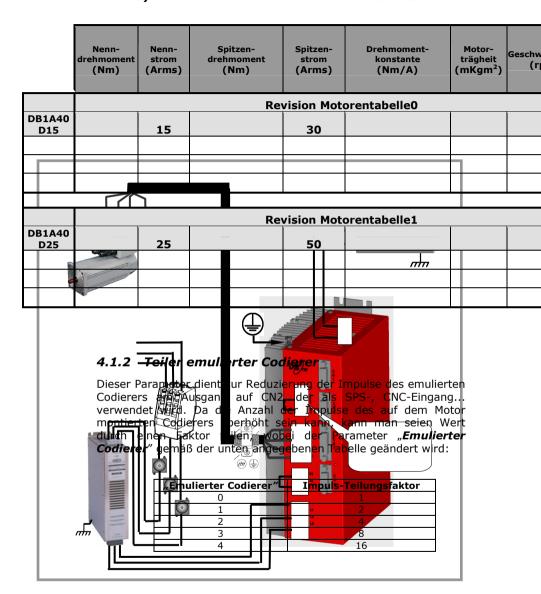



Abb. 3.1.1 Anschlüsse der Speisungen des Antriebs DB1 400V 3A-4A-7A-10A Series

0

b) Antrieb DB1 400V 15A-25A Series

	Nenn- drehmoment (Nm)	Nenn- strom (Arms)	Spitzen- drehmoment (Nm)		Drehmoment- konstante (Nm/A)	Motor- trägheit (mKgm²)	Geschwindigkeit (rpm)	Motor
			Revis	ion Mo	torentabell	e 1		
DB1A40B07		7		14				
			Revis	ion Mo	torentabell	e 2		
DB1A40C10		10		20				

b) Antrieb DB1 400V 15A-25A Series

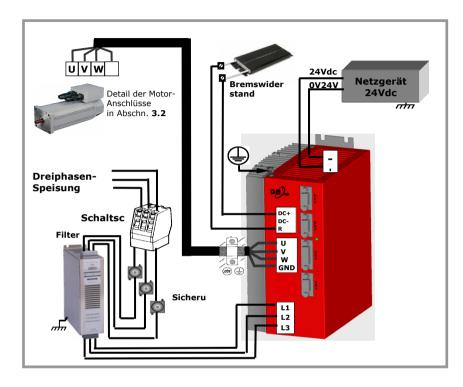


Abb. 3.1.2 Anschlüsse der Speisungen des Antriebs *DB1 400V 15A-25A Series*

3.1.1 ANSCHLUSS DES BREMSWIDERSTANDES AN DEN VERBINDER BRAKE

a) Antrieb DB1 400V 3A-4A-7A-10A Series

Wird ein externer **Bremswiderstand** verwendet, muss dieser zwischen den Pins 1 und 3 des Verbinders BRAKE angeschlossen werden, nachdem der Jumper zwischen den Pins 1 und 2 entfernt und der interne Widerstand abgeschlossen wurde. Um die Berechnung des Bremswiderstandes durchzuführen, ist auf das BEDIENUNGSHANDBUCH Bezug zu nehmen.

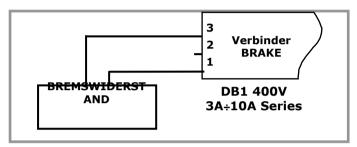
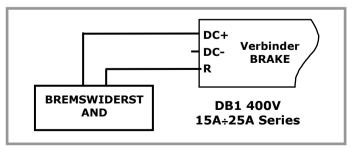



Abb. 3.1.1.1 Anschluss externer Widerstand an den Antrieb DB1 400V 3A-4A-7A-10A Series

b) Antrieb DB1 400V 15A-25A Series

Dieses Modell ist nicht mit einem internen Bremswiderstand ausgestattet, daher muss ein **externer Bremswiderstand** angeschlossen werden, dessen Standardwerte beim Modell 15A 64 Ω 600W und für das Modell mit 25A und 56 Ω 900W betragen. Natürlich können diese Werte je nach den besonderen, vom Anwendungstyp abhängigen Anforderungen variieren. Der Bremswiderstand muss zwischen dem Pin **DC+** und dem Pin **R** des Verbinders BRAKE angeschlossen werden. Um die Berechnung des Bremswiderstandes durchzuführen, ist auf das BEDIENUNGSHANDBUCH Bezug zu nehmen.

Emuierter Codierer	Teiler emulierter Codierer	0	4	0
MOTOR	Auswahl Motor	0	10	_

4.1.1 Motorentabelle

Für eine korrekte Zuweisung des Parameters zur Motorauswahl "MOTOR" muss auf die Motorentabelle Bezug genommen werden, die vom Modell der Antriebe abhängt.

a) Antrieb DB1 400V 3A-4A-7A-10A Series

	Nenn- drehmoment (Nm)	Nenn- strom (Arms)	Spitzen- drehmoment (Nm)	Spitzenstrom (Arms)	Drehmoment- konstante (Nm/A)	Motorträgheit (mKgm ²)	Geschwindigkeit (U/min)	Motor
			Re	evision Mot	torentabell	e 4	-	
DB1A40A03		3		6				
			Re	vision Mot	torentabell	e 2	1	1
DB1A40A04		4		8				

4. ÄNDERUNG DER ANTRIEBES-PARAMETER

Um die Arbeitsweise des Antriebs an die verschiedenen Anwendungen anzupassen, können einige Parameter geändert werden, wobei der Anschluss mit dem seriellen Port eines PC und die Software "Motor Control" verwendet werden, die kostenlos von folgender Website heruntergeladen werden kann: www.mdmotion.it.

4.1 BESCHREIBUNG ANTRIEBS-PARAMETER.

Die Antriebe *DB1* werden in der Fabrik mit vorbestimmten, gültigen und für den Strom- und Geschwindigkeitsregler und den Motor sicheren Parametern konfiguriert. Der Parameter zur Motorauswahl *MOTOR* wird mit einem vom Kunden gewünschten Modell des Motors zugewiesen. Beim Großteil der Anwendungen ermöglichen diese Standardeinstellungen das Erreichen optimaler Einstellungsleistungen. Sind diese Einstellungen nicht ausreichend, können diese Werte geändert werden. Bezüglich einer genaueren Beschreibung aller Parameter und der Möglichkeit einer Optimierung der Einstellungsmerkmale ist auf das BEDIENUNGSHANDBUCH Bezug zu nehmen.

И	/ichtigste Parameter	Wert Min.	Wert Max.	Wert Standard
GPS	Proportionaler Gewinn Drehzahlregelkreis	0	<mark>255</mark>	0
GIS	Vollständiger Gewinn Drehzahlregelkreis	0	<mark>255</mark>	128
Offset	Offset auf Set-Point Geschwindigkeit	0	<mark>255</mark>	<mark>128</mark>
Tsc	Einstellung des Drehmoments im Dauerbetrieb	0	255	<mark>255</mark>
Тр	Einstellung des Spitzendrehmoments.	0	<mark>255</mark>	<mark>255</mark>
I2t	Funktion zur Einstellung des Zurückstufungsfaktors	0	12750	0
Set Point	Bezugstyp	0	3	0
Direction	Drehsinn Motor	0	1	0

Abb. 3.1.1.2 Anschluss Bremswiderstand an den Antrieb

*DB1 400V 15A-25A Series**

3.2 ANSCHLÜSSE MOTOR MIT DB140

3.2.1 STROMANSCHLUSS ZWISCHEN MOTOR TEM UND VERBINDER MOTOR DI DB1

Die Dokumentation in der Beilage des Motors überprüfen. Die Anschlüsse zwischen dem Steckverbinder des Motors und dem Verbinder des Antriebs sind folgende:

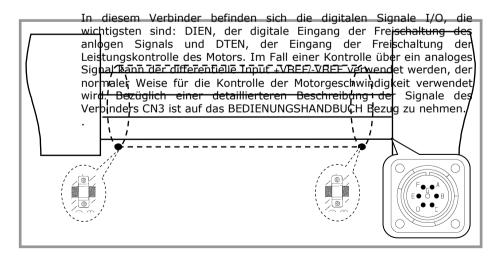
a) Motor SERIE BTS TEM mit Verbinder MOLEX:

DB1	Verbinder MOTOR			Verbinder Leistung	Motor Serie BTS
ERDU					GND
NG					2
W					3
V					1
U					_
		Anschluss Kabelabschirmung Kabelverschraubung	auf	der mit dem	

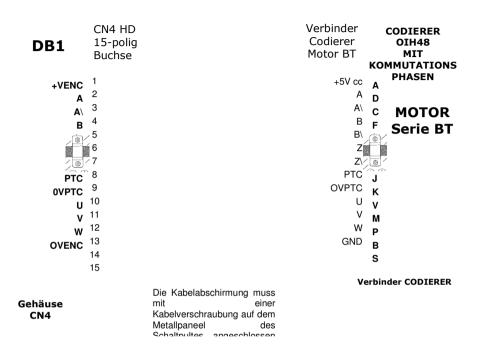
Abb. 3.2.1.1 Stromanschluss zwischen Motor der Serie BTS und Antrieb DB140

b) Motor SERIE BT TEM Verbindungsstecker:

DB1	Verbinder MOTOR			Verbinder	Motor Serie BT
U					A
V					В
w					С
ERDU NG	Anschluss Kabelabschirmung		der mit		D
	Kabelverschraubung	auf	dem		

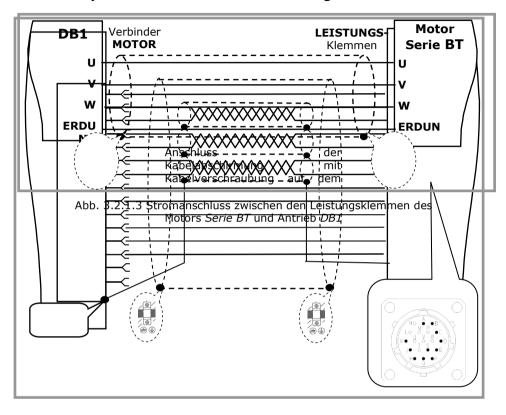

Um einige Anschlussbeispiele zu sehen, ist auf die Anwendungshinweise Bezug zu nehmen, die am Ende des INSTALLATIONSHANDBUCHS aufgeführt sind.

3.3.1 CN1: RS232 SERIELL


Für den Anschluss mit diesem Verbinder ist Einsicht in Folgendes zu nehmen: Einstellung Antriebs-Parameter über die serielle Schnittstelle.

3.3.3 CN3: ANALOGE UND DIGITALE KONTROLLSIGNALE

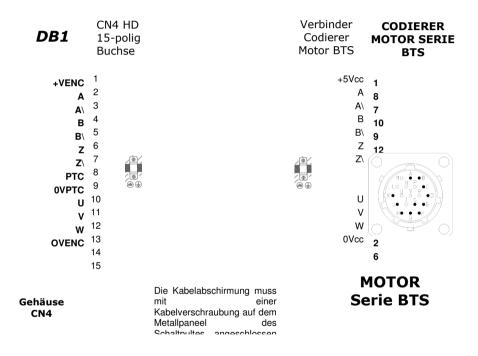
b) Motor mit Codierer, TAMAGAWA OIH48 und HC20 Hengstler, mit Kommutationsphasen:



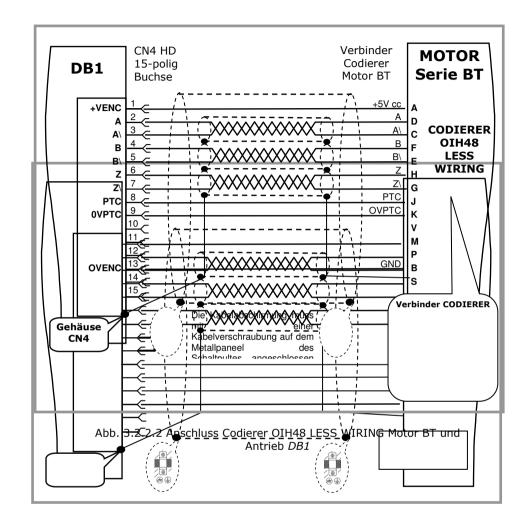
a) Abb. 3.2.2.3 Anschluss, Codierer OIH48 und HC20 Hengstler mit Kommutationsphasen, Motor BT und Antrieb *DB1*

3.3 ANSCHLÜSSE DER KONTROLLSIGNALE MIT DB140

Abb. 3.2.1.2 Stromanschluss zwischen Verbindungsstecker des Motors der *Serie BT* und Antrieb *DB1*


b) Motor SERIE BT TEM mit Leistungsklemmen:

3.2.2 ANSCHLUSS CODIERER MOTOR TEM MIT VERBINDER CN4 DB1


Die Dokumentation in der Beilage des Motors überprüfen. Die Anschlüsse zwischen dem Verbinder des Codierers des Motors und dem Verbinder CN4 der Antriebe sind folgende:

a) Motor SERIE BTS mit Codierer HC20 Hengstler mit Kommutationsphasen:

 a) Abb. 3.2.2.1 Anschluss Codierer, HC20 Hengstler mit Kommutationsphasen, Motor BTS und Antrieb DB1

b) Motor mit Codierer TAMAGAWA OIH48 LESS WIRING:

